Leçon 260 - Espérance, variance et moments de variables aléatoires.

Cadre : Toutes les variables aléatoires sont définies sur un espace probabilisé (Ω, A, P) à valeurs dans \mathbb{R} muni de la tribu borélienne et de la mesure de Lebesgue.

1. Définitions et premières propriétés. —

- 1. Espérance d'une variable aléatoire. —
- 2. Espérances de lois usuelles. —
- 3. Espérance conditionnelle. —

2. Moments d'une variable aléatoire. —

- 1. Moment d'ordre 2, variance et covariance. —
- 2. Lien avec l'indépendance. —
- 3. Moments d'ordre p. —

3. Utilisation des moments. —

- 1. Série génératrice.
 - **Dev** : Processus de Galton-Watson : Soient $X_{n,k}$ des v.a iid de loi discrète sur \mathbb{N} , intégrables. On définit la suite de v.a. (Z_n) par $Z_0 := 1$ et $Z_{n+1} := \sum_{k=1}^{Z_n} X_{n+1,k}$. Alors la probabilité d'extinction $a := P(\{existsn \ \operatorname{tq} \ Z_n = 0\})$ vaut 1 si $E[X_{0,0}] < 1$ ou si $P(X_{0,0} = 1) = 1$ et est dans $[0,1[\ \operatorname{si} \ E[X_{0,0}] \ge 1]$ et $P(X_{0,0} = 1) < 1$.
- 2. Fonction caractéristique et transformée de Laplace.
 - **Dev** : (Liens entre fonction caractéristique et moments) Soit X une v.a. réelle et φ_X sa fonction caractéristique.
 - Si X admet un moment d'ordre k, alors φ_X est de classe C^k , avec $\varphi_X^{(k)}(t) = E[(iX)^k e^{iXt}] \ \forall t \in \mathbb{R}.$
 - Réciproquement, Si φ_X est de classe C^k , alors X a un moment d'ordre $2\lfloor \frac{k}{2} \rfloor$.
 - Cor: Si X a un moment d'ordre n, alors $\forall t \in \mathbb{R}, \ \varphi_X(t) = \sum_{k=0}^{n-1} \frac{(it)^k}{k!} E[X^k] + \frac{(it)^n}{(n-1)!} E[X^n, \int_0^1 (1-u)^{n-1} e^{ituX} du].$

3. Convergence. —

- **Dev** : Théorème de Lévy : X_n converge en loi vers X ssi φ_{X_n} converge simplement vers φ_X .
- Théorème Central de la Limite : Soit X_n une suite de v.a. réelles iid ayant un moment d'ordre 2. Alors la suite $\frac{X_1 + .. + X_n nE[X_1]}{\sqrt{var(X_1)n}}$ converge en loi vers une loi normale centrée réduite N(0,1).

Références

Barbe, Ledoux:

Ouvrard (Probas 1): Processus de Galton-Watson.(Dev)(incomplet)

Ouvrard (Probas 2): Fonction caractéristique et moments d'une v.a.(Dev)

Zuily, Queffélec : Théorème de Lévy+TCL.(Dev)

June 3, 2017

Vidal Agniel, École normale supérieure de Rennes